Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (rs = 0.53 and p = 0.01; rs = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (rs = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies.