Samantha Samon et al, 2023

Comment

Samantha Samon et al, 2023

Silicone wristbands were utilized as personal passive samplers in a sub-cohort of 92 women, who participated in New York University Children's Health and Environment Study, to assess exposure to semi-volatile organic compounds (SVOCs). Wristbands were analyzed for 77 SVOCs, including halogenated and non-halogenated organophosphate esters (OPEs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and brominated flame retardants (BFRs) (e.g. polybrominated diphenyl ethers (PBDEs)).

Comment

Samantha M Samon et al, 2023

Comment

Samantha M Samon et al, 2023

Four main themes emerged from analysis of the transcripts: (1) views on the report layout; (2) expression of concern over how chemicals might impact their individual or community health; (3) participants emotional response towards the researchers; and (4) participants ability to comprehend and evaluate environmental health information. Evaluation of the report and key concerns differed across the three focus groups. However, there was agreement amongst the focus groups about the desire to obtain personal exposure results despite the uncertainty of what the participant results meant.

Comment

Shanshan Yin et al, 2023

Comment

Shanshan Yin et al, 2023

Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs.

Comment

Daniel M Figueiredo et al, 2023

Comment

Daniel M Figueiredo et al, 2023

It has been suggested that domestic animals can serve as sentinels for human exposures. In this study our objectives were to demonstrate that i) silicone collars can be used to measure environmental exposures of (domestic) animals, and that ii) domestic animals can be used as sentinels for human residential exposure. For this, we simultaneously measured polycyclic aromatic hydrocarbons (PAHs) using silicone bands worn by 30 pet cats (collar) and their owner (wristband).

Comment

Emily M Bonner et al, 2023

Comment

Emily M Bonner et al, 2023

This pilot study aims to use silicone passive sampling to assess improvements in dermal protection afforded by a novel configuration of PPE, which incorporates a one-piece liner to eliminate gaps in two critical interfaces between pieces of gear. The study compared protection against parent and alkylated PAHs between the one-piece liner PPE and the standard configuration of PPE with traditional firefighting jacket and pants.

Comment

Anna S Young et al, 2023

Comment

Anna S Young et al, 2023

Humans are exposed to increasingly complex mixtures of hormone-disrupting chemicals from a variety of sources, yet, traditional research methods only evaluate a small number of chemicals at a time.

Comment

SM Samon et al, 2023

Comment

SM Samon et al, 2023

Hurricane Harvey was a category four storm that induced catastrophic flooding in the Houston metropolitan area. Following the hurricane there was increased concern regarding chemical exposures due to damage caused by flood waters and emergency excess emissions from industrial facilities.

Comment

Mohammad Mofidfar et al, 2023

Comment

Mohammad Mofidfar et al, 2023

Wearing a silicone wristband exposes the internal surface of the wristband to glucose, lipids, and metabolites (metabolome) found in sweat and the external surface to occupational and environmental factors that could impact health found in the air (exposome). We use silicone wristband electrospray ionization mass spectrometry (SWESI-MS) to monitor these species.

Comment

Reddam Aalekhya et al, 2022

Comment

Reddam Aalekhya et al, 2022

Participants (N = 49) were asked to wear silicone wristbands, and a subset of them wiped interior parts at the front of their vehicles prior to one study week (N = 25) or both study weeks (N = 11).

Comment

Megan E Romano et al, 2022

Comment

Megan E Romano et al, 2022

Silicone wristbands act as passive environmental samplers capable of detecting and measuring concentrations of a variety of chemicals. They offer a noninvasive method to collect complex exposure data in large-scale epidemiological studies.

Comment

Laura T Ward et al, 2022

Comment

Laura T Ward et al, 2022

Bees are critical for food crop pollination, yet their populations are declining as agricultural practices intensify. Pollinator-attractive field border plantings (e.g. hedgerows and forb strips) can increase bee diversity and abundance in agricultural areas; however, recent studies suggest these plants may contain pesticides.

Comment

Samantha M Samon et al, 2022

Comment

Samantha M Samon et al, 2022

Hurricane Harvey was associated with flood-related damage to chemical plants and oil refineries, and the flooding of hazardous waste sites, including 13 Superfund sites. As clean-up efforts began, concerns were raised regarding the human health impact of possible increased chemical exposure resulting from the hurricane and subsequent flooding.

Comment

Catherine F Wise et al, 2021

Comment

Catherine F Wise et al, 2021

Pesticides are used extensively in residential settings for lawn maintenance and in homes to control household pests including application directly on pets to deter fleas and ticks. Pesticides are commonly detected in the home environment where people and pets can be subject to chronic exposure.

Comment

O'Connell, Anderson, Epstein et al, 2021

MyExposome Research: Determining chemical air equivalency using silicone personal monitors

The goals of this study are:

  • (1) to expand upon measurements of atmospheric uptake using Silicone Wristbands for both VOC and SVOC compounds,

  • (2) to build, test, and compare models of uptake parameters using inputs from established and convenient sources, and

  • (3) to provide an example of calculating air equivalent concentrations using the best available models.

The successful result was that log Ksa and log ke estimates calculated from uptake data were used to build predictive models from boiling point (BP) and other parameters (all models: R2 = 0.70–0.94). The log Ksa models were combined with published data and refined to create comprehensive and effective predictive models (R2 : 0.95–0.97). Final estimates of air equivalency using novel BP models correlated well over an example dataset (Spearman r = 0.984) across 5-orders of magnitude (<0.05 to >5000 ng/L)

Linh V. Nguyen et al, 2020

Comment

Linh V. Nguyen et al, 2020

Silicone passive samplers were assessed for measuring personal exposure to 37 flame retardants at three Québec e-waste recycling facilities. Silicone brooches (n = 45), wristbands (n = 28), and armbands (n = 9) worn during a ∼8 h work shift accumulated detectable amounts of 95–100% of the target compounds. Brooch concentrations were significantly correlated with those from active air samplers from which we conclude that the brooches could be used to approximate inhalation exposure and other exposures related to air concentrations such as dermal exposure. The generic sampling rate of the brooch (19 ± 11 m3 day–1 dm–2) was 13 and 22 times greater than estimated for home and office environments, respectively, likely because of the dusty work environment and greater movement of e-waste workers. BDE-209 concentrations in brooches and wristbands were moderately and significantly (p < 0.05) correlated with levels in blood plasma; organophosphorus esters in brooches and wristbands were weakly and insignificantly correlated with their metabolite biomarkers in post-shift spot urine samples. Silicone brooches and wristbands deployed over a single shift in a dusty occupational setting can be useful for indicating the internal exposure to compounds with relatively long biological half-lives, but their use for compounds with relatively short half-lives is not clear and may require either a longer deployment time or an integrated biomarker measure.

Comment

Christopher D. Kassotis et al, 2020

Research suggests that thyroid cancer incidence rates are increasing, and environmental exposures have been postulated to be playing a role. To explore this possibility, we conducted a pilot study to investigate the thyroid disrupting bioactivity of chemical mixtures isolated from personal silicone wristband samplers within a thyroid cancer cohort. Specifically, we evaluated TRβ antagonism of chemical mixtures extracted from wristbands (n = 72) worn by adults in central North Carolina participating in a case–control study on papillary thyroid cancer. Sections of wristbands were solvent-extracted and analyzed via mass spectrometry to quantify a suite of semivolatile chemicals. A second extract from each wristband was used in a bioassay to quantify TRβ antagonism in human embryonic kidney cells (HEK293/17) at concentrations ranging from 0.1 to 10% of the original extract (by volume). Approximately 70% of the sample extracts tested at a 1% extract concentration exhibited significant TRβ antagonism, with a mean of 30% and a range of 0–100%. Inhibited cell viability was noted in >20% of samples that were tested at 5 and 10% concentrations. Antagonism was positively associated with wristband concentrations of several phthalates, organophosphate esters, and brominated flame retardants. These results suggest that personal passive samplers may be useful in evaluating the bioactivities of mixtures that people contact on a daily basis. We also report tentative associations between thyroid receptor antagonism, chemical concentrations, and papillary thyroid cancer case status. Future research utilizing larger sample sizes, prospective data collection, and measurement of serum thyroid hormone levels (which were not possible in this study) should be utilized to more comprehensively evaluate these associations.

Jeramy L.R.Baum  et al., 2020

Comment

Jeramy L.R.Baum et al., 2020

Compared to the general population, firefighters are known to sustain greater levels of exposure to hazardous compounds, despite their personal protective equipment, also known as turnout gear. Among the most significant toxins that firefighters are chronically exposed to are polycyclic aromatic hydrocarbons (PAHs). Additionally, firefighters have also been noted to exhibit an increased incidence of certain types of cancer. Considering a probable link between exposure to PAHs and increased rates of cancer in the fire service, we aim to document ambient chemical concentrations in the firefighter work environment. Our strategy involves the use of silicone-based wristbands that have the capacity to passively sorb PAHs. To determine if wristbands can serve as an effective chemical monitoring device for the fire service, silicone wristbands were pilot-tested as personal sampling devices for work environment risk monitoring in active-duty firefighters. Recovered wristbands underwent multiple extraction steps, followed by GC-MS analysis to demonstrate their efficacy in monitoring PAHs in the firefighter environment. Initial findings from all wristband samples taken from firefighters showed multiple exposures to various PAHs of concern for the health of the firefighters when in a fire environment. In addition to PAH monitoring, we examined known and potential sources of PAH contamination in their work environment. To that end, profiles of elevated PAH concentrations were documented at various fire stations throughout South Florida, for individual firefighters both during station duties and active fire response.

Comment

Comment

Reche et al., 2020.

Athletes' exposure to air pollution during World Athletics Relays: A pilot study. 

Potential adverse consequences of exposure to air pollutants during exercise include decreased lung function, and exacerbation of asthma and exercise-induced bronchoconstriction. These effects are especially relevant for athletes and during international competitions, as they may impact athletic performance. Thus, assessing and mitigating exposure to air pollutants during exercising should be encouraged in sports venues. A comprehensive air quality assessment was carried out during the World Relays Yokohama 2019, in the stadium and the warm-up track. The pilot included on-line and off-line instrumentation for gaseous and particulate pollutants and meteorological parameters, and the comparison with local reference data. Air quality perception and exacerbation of symptoms of already-diagnosed diseases (mainly respiratory and cardiovascular) were assessed by athletes by means of questionnaires during training sessions. Median NO2 concentrations inside the stadium (25.6–31.9 μgm−3) were in the range of the Yokohama urban background, evidencing the impact of urban sources (e.g., traffic) on athletes' exposure during training and competition. The assessment of hourly air pollutant trends was identified as a valuable tool to provide guidance to reduce atheletes' exposure, by identifying the periods of the day with lowest ambient concentrations. This strategy could be adopted to define training and competition schedules, and would have special added value for athletes with respiratory conditions. Personal exposure to polycyclic aromatic hydrocarbons was quantified through wearable silicone wristbands, and showed highly variability across volunteers. The wristbands are a simple approach to assess personal exposure to potentially toxic organic compounds. Further research would be necessary with regard to specific air pollutants that may trigger or exacerbate respiratory conditions typical of the athlete community. The availability of high time-resolved exposure data in the stadiums opens up the possibility to calculate doses of specific pollutants for individual athletes in future athletics events, to understand the impact of environmental factors on athletic performance.

Comment

Comment

Wang et al., 2020.

Silicone (polydimethylsiloxane or PDMS) wristbands and cotton T-shirts were used to assess the exposure of e-waste recyclers in Dhaka, Bangladesh to polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate esters (OPEs). The median surface-normalized uptake rates of PBDEs, NBFRs, DPs, and OPEs were 170, 8.5, 4.8, and 270 ng/dm2/h for wristbands and 5.4, 2.0, 0.94, and 23 ng/dm2/h for T-shirts, respectively. Concentrations of Tris(2-chloroethyl) phosphate (TCEP), Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Tri-m-cresyl phosphate (TmCP), Bis(2-ethlyhexyl) tetrabromophthalate (BEH-TEBP), and Dechlorane plus (DPs) in wristbands were significantly correlated with those in T-shirts. Wristbands accumulated ~7 times more mass than T-shirts, especially of compounds expected to be mainly in the gas phase. We introduce the silicone “sandwich” method to approximate the easily releasable fraction (ERF) from T-shirts, hypothesized to be related to dermal exposure. ERFs varied from 6 to 75% of total chemical accumulated by T-shirts and were significantly negatively correlated with compounds' octanol-air partition coefficient (log Koa). The median daily exposure doses via dermal transfer from the front of the T-shirt to the front body trunk were 0.32, 0.13, 0.11, and 9.1 ng/kg-BW/day for PBDEs, NBFRs, DPs, and OPEs, respectively. The evidence of e-waste recycler exposure to flame retardants in this low income country, lacking protective personal equipment, calls for measures to minimize their exposure and for chemical management regulations to consider exposures to chemicals in waste products.

Comment

Comment

Hammel et al., 2020

Organophosphate esters (OPEs) are applied as additive flame retardants, and along with phthalates, are also used as plasticizers in consumer products. As such, human exposure is common and chronic. Deployed as personal passive samplers, silicone wristbands have been shown to detect over a thousand industrial and consumer product chemicals; however, few studies have evaluated chemical concentrations with their corresponding biomarkers of exposure, especially in children.

Comment