Success in mapping the human genome has fostered the complementary concept of the "exposome". The exposome can be defined as the measure of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual’s exposure begins before birth and includes insults from environmental and occupational sources. Understanding how exposures from our environment, diet, lifestyle, etc. interact with our own unique characteristics such as genetics, physiology, and epigenetics impact our health is how the exposome will be articulated.
As the environmental health science field strives to better understand the complexity of personal chemical exposures, NIEHS-funded researchers at the Oregon State University (OSU) Superfund Research Program (SRP) led by Kim Anderson, Ph.D., have developed a simple wristband and extraction method that can test exposure to 1,200 chemicals.
Wristbands are the accessory of choice for people promoting a cause. And the next wave of wrist wear might act as a fashionable archive of your chemical exposure.
Active-sampling approaches are commonly used for personal monitoring, but are limited by energy usage and data that may not represent an individual’s exposure or bioavailable concentrations. Current passive techniques often involve extensive preparation, or are developed for only a small number of targeted compounds. In this work, we present a novel application for measuring bioavailable exposure with silicone wristbands as personal passive samplers. Laboratory methodology affecting pre-cleaning, infusion, and extraction were developed from commercially available silicone, and chromatographic background interference was reduced after solvent cleanup with good extraction efficiency (>96%). After finalizing laboratory methods, 49 compounds were sequestered during an ambient deployment which encompassed a diverse set of compounds including polycyclic aromatic hydrocarbons (PAHs), consumer products, personal care products, pesticides, phthalates, and other industrial compounds ranging in log Kow from -0.07 (caffeine) to 9.49 (tris(2-ethylhexyl) phosphate). In two hot asphalt occupational settings, silicone personal samplers sequestered 25 PAHs during 8- and 40-hour exposures, as well as 2 oxygenated-PAHs (benzofluorenone and fluorenone) suggesting temporal sensitivity over a single work day or week (p<0.05, power = 0.85). Additionally, the amount of PAH sequestered differed between worksites (p<0.05, power = 0.99), suggesting spatial sensitivity using this novel application.
All of the things we’re exposed to, taken together, make up what’s called the “exposome.” In this podcast, we learn how studying the exposome helps scientists take a holistic look at how environmental exposures can keep us healthy—or make us sick.